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Abstract: The problem of optimal control for a class of non-linear objects with uncontrolled bounded 
disturbances is formulated in the sense of a differential game. In case of problems with quadratic quality 
functional, the problem of optimal control search is reduced to finding of solution of Hamilton-Jacobi-
Isaacs equation. Solutions of this equation at the rate of functioning of the object are searched by means 
of special algorithmic procedures obtained with the use of viscosity solution theory. The obtained results 
may be used for solving of theoretical and applied problems of mathematics, mechanics, physics, 
biology, chemistry, engineering, control and navigation. 
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1. INTRODUCTION 

Successful implementation of obtained theoretical results in a 
number of problems is connected with solving of partial first-
order derivative equations. Such partial derivative equations 
appear under solving of a great number of theoretical and 
applied problems of mathematics, mechanics, physics, 
biology, chemistry, engineering, control, etc. Such equations 
are Hamilton-Jacobi equation in theoretical mechanics 
(Arnold, 1977), Bellman equation in theory of optimal 
control (Bellman, 1957), Isaacs equation (Isaacs, 1965), 
eikonal equation in geometrical optics (Courant, 1961), 
Burgers and Hopf limit equations in gas dynamics and 
hydrodynamics (Bardi M., 1997; Crandal M. G., 1992), etc. 
The method of characteristics proposed in the first half of the 
19th century by O. Cauchy for solving boundary problems for 
such equations reduces integrating of partial first-order 
derivative equations to integrating of a system of ordinary 
differential equations. This method is based on the fact that 
invariance of graph of the classical solution for a boundary 
problem is relative to the characteristics. However, in case of 
partial derivative nonlinear equation, smooth solution exists 
only locally. 
In 1950-1970s a lot of mathematicians paid much attention to 
generalized solutions of Hamilton-Jacobi and other types of 
equations (Evans L.C. 1998; Bardi M., 1998). Developed 
methods mainly based on integral methods and integral 
properties of generalized solutions. 
In early 1980s a concept of viscosity solution was introduced 
the existence of which was proved by method of disappearing 
viscosity (Crandall and all, 1992). The method is also being 
developed at present time. The researches pay attention to 
analytical, constructive and numerical methods of 
construction of viscosity solutions (Cacace and all, 2011) and  
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application of theoretical results to solving of various applied 
problems.Another well-known concept of the generalized 
solution based on idempotent analysis was proposed in works 
by V.P. Maslov and his disciples (1992). By means of this 
approach linearizing convex problems, Hamilton-Jacobi 
equations with a convex Hamiltonian and their applications 
to problems of mathematical physics are studied. 

Optimal control problems and differential games are 
connected one way or another with a search for solutions of 
Hamilton-Jacobi-Bellman, Isaaks equations. To solve such 
equations, constructive and numerical methods (including 
grid ones) were developed (Subbotin and all, 1993, 1994). An 
important result of the theory of minimax solutions of first-
order PDE being a base for differential game theory is 
proving the equivalence of concepts of minimax and 
viscosity solutions (Subbotin, 1995). 

Within the frameworks of minimax solution concept 
originating from the theory of position differential games 
(Krasovsky, Subbotin, 1988) developed by school of 
N. N. Krasovsky on the base of minimax evaluations and 
operations, theorems of existence and uniqueness, correctness 
and content-richness of minimax solution concept for various 
types of boundary problems of partial first-order PDE were 
proved. 

Despite available theoretical results in this area, the issue of 
Hamilton-Jacobi-Isaacs equation solution in the problems of 
differential games with non-linear indefinite dynamic objects 
in the rate of their functioning persists and is important today.  

2. NON-LINEAR OPTIMAL REGULATER 

2.1. Problem statement 
Consider a dynamical non-linear uncertain system described 
by the ordinary differential equation 
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Here  , 0( ) ( ) [ , ]nx x t R t t T     is a state vector of the 

system; ( ) xx    , 
0 xX   is a range of possible initial 

conditions of the system; ,my R m n   is an output of the 

system; ru R  is a control; kw R  is a disturbance; 

1 2
( ), ( ), ( )f x g x g x  are continuous matrix functions. 

It is assumed that for all x system (2.1) is controllable and 
observable, t R . In addition, assume that functions 

1 2
( ), ( ), ( )f x g x g x  are smooth enough ( )C , so that for 

any 
0 0

( , ) xt x R    only one solution 
0 0

( , , )x t t x  of (2.1) 
equation is possible and the corresponding output of the 
system 

0
( ) ( , )y t Cx t x  is unique. 

Assumption 2.1. The vector function ( )f x  is continuous 

differentiable with respect to Ωxx  , i.e. 1( ) (Ω )xf C   

and 0
1 2( ), ( ) (Ω )g g С x   .  

Assumption 2.2. Without loss of generality, assume that 
condition 0 Ωxx    is a point of equilibrium of the system 

under 0, 0u w  , so that (0) 0f   and 1 ( ) 0,g x   

2 ( ) 0, Ωxg x x   . 
While considering disturbance ( )w t  as an action of some 
player against successful performance of a control problem, 
we state the control problem in the sense of a differential 
game of two players: uG  and wG . Controls ( )u t U  and 

( )w t W  will be organized using the state feedback 
principle.  

So, in the present section, the problem of control of non-
linear uncertain object (2.1) will be considered in the sense of 
the minimax theory. 
Introduce the cost functional of the differential game 
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In functional (2.2) a symmetrical matrix Q  is at least 
positively semidefinite, P  and R  matrices are positive 
definite. 
Assumption 2.3. Limits on control actions U  and W , where 
the task is executed successfully differential game, 
determined by the respective values of the matrices ,R P , 

parameters , 1, ...i i k   and matrix 
1 2

( ), ( )g x g x . 

Let element  ( ), ( ), ( )x t u t w t   be a permissible 
controllable process. Functions of class 

   1 1( ) [ , ], , ( ) [ , ],0 0
n rx C t T R u C t T R    , 

 1
0( ) [ , ], kw C t T R   will be considered as permissible 

elements  ( ), ( ), ( )x t u t w t  . 
The problem of differential game consists in construction of 
an optimal strategy with feedback for players uG  and wG , 
i.e. in finding of control ( )u t  minimizing a functional of 
(2.2) on the object (2.1) under corresponding counteraction to 
control ( )w t . 

2.2. Optimal controls of differential game 
Make two assumptions: 
Assumption 2.4. Let 

1 2
( ), ( ), ( )f x g x g x  be smooth 

enough functions, so that function ( , )V t x  determined as 

( , ) inf sup ( , , )
u U w W

V t x J x u w
 

    (2.3) 

is a differentiable function under any permissible strategies of 
players 2, (0, )w uG G L  . 
Assumption 2.5. A function ( , )V t x  determined in (2.3) is 

locally Lipschitz in x . 
In general case, value of an assigned function ( , )V t x  is a 
solution of dynamic programming problem connected with 
partial differential equation of the first order (first order PDE)  
Hamilton-Jacobi-Isaacs (Issacs, 1965). 
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where H  is Hamiltonian 
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Optimum controls ( )u t  and ( )w t  when performing 
Assumptions 2.3, defined by the relations 
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where vector ( ) /V x x   is determined by solution of 
Hamilton-Jacobi-Isaacs equation: 
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1 T 1 T
2 12 1

( ) ( ) ( ) ( ) ( )П x g x R g x g x P g x   .  (2.8) 

The main difficulty under implementation of controls in form 
(2.6) consists in finding of vector ( ) / ( )V x x t   satisfying 
scalar partial derivative equation (2.7). 

2.3. Conditions of existence of optimal solution 
Conditions of existence of optimal solution of the set 
problem are determined by properties of matrix ( )П x . To 
determine properties of this matrix, consider in this section 
problem of synthesis of stabilizing controls for system (2.1), 
i.e. consider the problem with unlimited time of transition 
process. Quality functional for such a problem has the form 
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Show that system (2.1) with controls (2.6) where vector 
( ) /V x x   is determined by solution of Hamilton-Jacobi-

Isaacs: 
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is asymptotically stable, i.e. lim ( ) 0
t

x t


  under fulfillment of 
certain requirements to matrix ( )П x . 
Assumption 2.6. Let matrix ( )П x  be at least positively 
semidefinite. 

The system (2.1) with controls (2.6) is determined by the 
expression  
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Theorem 2.1. System (2.11) is asymptotically stable if and 
only if 
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where ( )П x  is at least positively semidefinite matrix. 
Proof. From equation (2.10) we have 
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Hence, as soon as T T ( ) 0x H QHx t  , 
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Define requirements to assignment of matrices P  and R  
under which Assumption 2.3 is true, i.e. matrix ( )П x  is at 
least positively semidefinite.  
In accordance with Lyapunov theorem, system (2.11) 
is asymptotically stable if the following condition is fulfilled: 

Т
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Assign 3 ( )x  as T T
3

1
( ) ( ) ( )

2
x x t H QHx t   where Q  is 

a positively semidefinite matrix of quality functional (2.9). 
Then, taking into account (2.11) and (2.12), we have 
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In view of (2.11), we get that the matrix ( )П x  is at least 
positively semidefinite. As it is seen from (2.8), this property 
of matrix ( )П x  may be ensured (under known matrices 

1 ( )g x  and 2 ( )g x ) by appropriate assignment of matrices R  
and P . 

3. VISCOSITY SOLUTION OF EQUATION (2.8) 

Development of convex and uneven analysis in 1970s 
allowed application of new results and methods based on 
generalizations of differentiability concept to study of 
generalized solutions of a first order PDE. In early 1980s 
M. Crandall and P. L. Lions introduced concept of viscosity 
solution (Crandall and all, 1992). Introduce one of equivalent 
definitions of viscosity solution. 
Definition 3.1. Upper viscosity solution of equation  

 
T T

T

( , ) ( , ) 1
( ) ( )

2

1 ( , ) ( , )
( ) 0

2

H
V t x V t x

f x x QHx t
t x

V t x V t x
П x

x x

 
  

 

 
 

 

 (3.1) 

is continuous function T ( ) ( )t x t  meeting the following 

condition: if difference of functions T( , ) ( ) ( )V t x t x t  

reaches a local minimum in point * *( , ) Ωt x   and function 
T ( ) ( )t x t  is differentiable in this point, the following in 

inequality is true: 
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Definition 3.2. Lower viscosity solution of equation (3.1) is 
continuous function T ( ) ( )t x t  meeting the following 

condition: if difference of functions T( , ) ( ) ( )V t x t x t  

reaches a local maximum in point * *( , ) Ωt x   and function 
T ( ) ( )t x t  is differentiable in this point, the following 

inequality is true: 
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Definition 3.3. Viscosity solution is a function which is 
simultaneously upper and lower solution, i.e. the following 
condition is true:  
  T( , ) ( ) ( )V t x t x t .  (3.4)  
On the base of this definition, find equation for function ( )t . 
Write total derivative of function ( , )V t x : 
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and in view of (2.11) and (3.1), i.e. 
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we have: 
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Making (3.5) and (3.6) equal, we get 
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hence 
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Rewrite this expression taking into account that 
T( , ) ( ) ( )V t x t x t  and T( , ) / ( )V t x x t     
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System with controls 
1 T

2( ) ( ) ( )u t R g x t  , 1 T
1( ) ( ) ( )w t P g x t  (3.8) 

has the form: 
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To find values of quality functional when system is described 
by expression (3.9), add to integrant of functional (2.2) 

expression  T ( ) ( ) /d t x t dt  compensating this addition 

outside of the integral T T
0 0( ) ( ) ( ) ( )t x t T x T  . It is not 

difficult to get that  
0 T T

0 0

1 1
( , ) ( ( )) ( ) ( ) ( ) ( )

2 2
J x K x T t x t T x T     .  

As soon as ( , ( )) ( ( ))V T x T K x T , defining ( ( ))K x T  as 
T( ( )) 0, 5 ( ) ( )K x T T x T  we get value of quality 

functional under optimal controls (3.8) 
0 T

0 0( , ) 0, 5 ( ) ( )J x t x t  .   (3.10) 
Note that equation (3.7) defines dynamic accordance of 
function ( )t  to vector of system state ( )x t . This 
circumstance under fulfillment of Assumption 2.1 and 2.2 
and known initial condition 0( )x t  may be used for defining 
of initial conditions for equation (3.7). 

Using the method of "extended linearizing" and taking into 
account Assumptions 2.1 and 2.2, represent the initial non-
linear system (2.1) in the form of equivalent model of the 
system (Afanas’ev, 2015)  
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x t A x x t g x w t g x u t x x

dt
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

(3.11) 

As it is known, such a representation of the initial system is 
not unique in general (Cimen, 2008), but selection of a 
suitable model of form (3.11) is not considered in this work. 

It is only assumed that pairs (1( ), )A x g x  and 

2( ), ( )A x g x  are controllable, and pair ( ),A x C  is 

observable under all Ωxx  . 

Define vector function  T
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On the other side, 
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 T  T( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.S x A x A x S x S x П x S x H QH      

When considering this equation under 0( )x t const , we get 
Riccati algebraic equation  

T
0 0 0 0

T
0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) 0.

S x A x A x S x

S x П x S x H QH

 

  
   (3.15) 

The positive definite matrix 0( )S x  found by solving of this 

equation together with initial conditions 0( )x t  determine 
initial condition for equation (3.7), i.e. 

 
T

T T T

T T
0 0 0 0 0

T( ) 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

2 2

( ) ( ) ( ) ( ) ( ). (3.16)

d t
x t t f x t П x t x t H QHx t

dt

t x t x t S x x t


  



   



 

4. ALGORITHMIC METHOD FOR DESIGN OF 
CONTROLS 

The main difficulty of implementation of controls in form 
(3.8) consists in finding of vector ( )t  satisfying viscosity 
solution (3.7). One of possible ways of finding of control 
using equation (3.7) is a method based on approximation of 
this equation by Taylor series around the equilibrium point. 
However, the method based on representation of partial 
derivative inequality using approximation around the 
equilibrium point does not provide obtaining of more general 
solutions. 

Propose a method of search based on application of method 
of algorithmic construction. First of all, it should be noted 
that equation (3.7) determines dynamic accordance of vector 
function ( )t  to vector of state of the system ( )x t , i.e. to 
state of the viscosity solution (3.4). In other words, function 

( )t  should transfer the systems from upper or lower 
viscosity solution to a state being simultaneously upper and 
lower solution, i.e. when the following condition is true: 

T( , ) ( ) ( )V t x t x t . 

Organize an algorithm providing transfer of the system into 
viscosity solution using Lyapunov function ( , )LV x   

  2T( , ) 0, 5 ( ) ( )LV x t x t  .  (4.1) 

Total derivative of the function (4.1) is 

 

 

T T T

T T T T

( , )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.

(4.2)

L
V x

d
dt

d dt x t t x t t x t
dt dt

dt x t t x t t A x x t t П x t
dt



  

    


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         

 

Substituting expression T ( ) ( ) ( )t П x t   obtained from (3.16) 
into (4.2) 

T

T
T T T

( ) ( ) ( )

( )
2 ( ) 2 ( ) ( ) ( ) ( )

t П x t

d t
x t t f x x t H QHx t

dt

 




 

   
 
 
 

 

we have 

 T T T T T

( , ) (4.3)

( ) ( ) ( ) ( ) ( ) ( ) 0

L

d
V x

dt
d

t t A x x H QH x t t x t
dt



  


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As soon as the expression within the brackets and the 
expression outside of the brackets may have both positive and 
negative values, relation (4.3) is true under the only condition 

 T T T T T( ) ( ) ( ) ( ) ( ) ( ) 0
d

t t A x x H QH x t t x t
dt
    

 
  

 

Require that this condition be true when function ( )t  
providing fulfillment of "vanishing viscosity" condition 
corresponds to solution of the following differential equation 

T T

0 0 0

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ).

d
t A x t H QHx t

dt
t S x x t

 



  



 (4.4) 

5. PROBLEM WITH UNLIMITED TRANSITION 
PROCESS END TIME 

Note that the final value of the functional under T    does 
not have a common sense. Consider transition of the system 
from state 0 0( )x t x  into 0x   within large enough T. 
Quality functional in such a problem has form (2.10). In this 
case, control determined by the equations (2.7), where the 
vector ( ) /V x x   is determined by solution of Hamilton-
Jacobi-Isaacs (2.10): 

T

T T

( ) 1 ( ) ( )( ) ( )
2

1 ( ) ( ) 0
2

V x V x V xf x П x
x x x

x t H QHx t

        

 

 

Define viscosity solution for this case. 

Definition 5.1. Upper viscosity solution of equation  

T T T T

( , ) (5.1)

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.

2 2

x

t f x x t H QHx t t П x t

 

  



   
 

is continuous function T ( ) ( )t x t  meeting the following 

condition: if difference of functions T( ) ( ) ( )V x t x t  

reaches a local minimum in point * *( , ) Ωt x   and function 
T ( ) ( )t x t  is differentiable in this point, the following 

inequation is true: 

T T T T

( , )

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.

2 2

x

t f x x t H QHx t t П x t

 

  



   
 (5.2) 

Definition 5.2. Lower viscosity solution of equation (5.1) is 
continuous function T ( ) ( )t x t  meeting the following 

condition: if difference of functions T( ) ( ) ( )V x t x t  



 
 

     

 

reaches a local maximum in point * *( , ) Ωt x   and function 
T ( ) ( )t x t  is differentiable in this point, the following 

inequation is true: 

T T T T

( , )

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.

2 2

x

t f x x t H QHx t t П x t

 

  



   
 (5.3) 

Definition 5.3. Viscosity solution is a function which is 
simultaneously upper and lower solution, i.e. meeting the 
following condition:  
 T ( ) ( ) ( )t x t V x  .    (5.4) 

To search for vector ( )t  introduce Lyapunov 

function ( , )LV x   

 2( , ) 0, 5 ( , )LV x x   .   (5.5) 
Total derivative of Lyapunov function (5.4) for stable system 
is 

( , ) (5.6)

( , ) ( ) ( , ) ( )
( , ) ( , ) 0.

L
d

V x
dt

x dx t x d t
x x

x dt dt



  
 





 
    
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Require that this condition be true when function ( )t  
providing fulfillment of "disappearing viscosity" condition 
[11] corresponds to solution of the following differential 
equation 

T

0 0 0
( ) ( , )

( , ), ( ) ( )
d t x

x t S x x
dt

 
 




   



 
 
 

. (5.7) 

Taking into account that 
T

( , )
( ) ( ) ( ) ( )

x d
f x П x t x t

dt



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rewrite equation (5.7): 

0 0 0
( )

( , ) ( ), ( ) ( )
d t d

x x t t S x x
dt dt


    . (5.8) 

In view of condition (5.6), write condition of efficient 
operation of algorithm (5.7): 

2
2( , ) ( , ) ( )

( , ) ( , ) , ( ) x
x x dx t

x x x t
x dt

 
 



 
   

 
. (5.9) 

So, algorithm (5.7) in the problem of stabilizing of non-linear 
indefinite object may provide efficient operation of controls 

1 T
1( ) ( ) ( )w t P g x t , 1 T

2( ) ( ) ( )u t R g x t   when 
condition (5.9) is fulfilled. 
Theorem 5.1. Algorithm (5.7) provides fulfillment of 
"vanishing viscosity" condition if  

2
2( , ) ( , ) ( )

( , ) ( , ) , ( ) x
x x dx t

x x x t
x dt

 
 



 
   

 
. 

 

 

6. CONCLUSIONS 

The problem of optimal control for class of non-linear objects 
with uncontrolled restricted excitations is stated in the sense 
of a differential game. In case of problems with quadratic 
quality functional, the problem of search of optimal controls 
is reduced to finding of solution of partial derivatives 
Hamilton-Jacobi-Isaaks scalar equation. Solutions of this 
equation at the rate of functioning of the object are searched 
by means of special algorithmic procedures obtained with the 
use of theory of viscosity solution. The obtained results may 
be used for real-time solving of theoretical and applied 
problems of mathematics, mechanics, physics, biology, 
chemistry, engineering, control and navigation.  
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