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Introduction

Maruyama, 1977: moduli rank r stable vector bundles on a projective
scheme X with fixed Chern classes cy, ..., ¢, can be parametrized by an
algebraic quasi-projective scheme, denoted by Bx(r, cy, ..., ¢;). Although
this result has been known for almost 40 years, there are just a few
concrete examples and established facts about such schemes, even for
cases like X = P3 and r = 2. For instance,
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This probably happened due to the fact that the questions of

irreducibility (solved by [T] in 2012-13), and smoothness (answered by

Jardim and Verbitsky in 2014) of the so-called instanton component of

the moduli space Bps(2,0, cz) for all c; € Z, remained open until 2014. 5,



Introduction

In this talk, I'll present my joint paper with Ch. Almeida (Belo
Horizonte), M. Jardim (Campinas), and Sergey Tikhomirov (Yaroslavl)
[New moduli components of rank 2 bundles on projective space. Sbornik
Mathematics, 212:11 (2021), 1503-1552.]

In this paper, we continue the study of the moduli space Bp:(2,0, n),
which we will simply denote by B(n) from now on, with the goal of
providing new examples of families of vector bundles, and understanding
their geometry. It is more or less clear from the table in [Hartshorne-Rao,
1991, Section 5.3] that B(1) and B(2) should be irreducible, while B(3)
and B(4) should have exactly two irreducible components; see
[Ellingsrud-Strgmme, 1981] and [Chang, 1983], respectively, for the proof
of the statements about B(3) and 5(4).
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In this paper, we continue the study of the moduli space Bp:(2,0, n),
which we will simply denote by B(n) from now on, with the goal of
providing new examples of families of vector bundles, and understanding
their geometry. It is more or less clear from the table in [Hartshorne-Rao,
1991, Section 5.3] that B(1) and B(2) should be irreducible, while B(3)
and B(4) should have exactly two irreducible components; see
[Ellingsrud-Strgmme, 1981] and [Chang, 1983], respectively, for the proof
of the statements about B(3) and 5(4).

As for B(5), a description of all its irreducible components had been a
challenge since 1980ies. In the paper, we give a complete answer to this
problem (Main Theorem 2 below).

For n > 5, two families of irreducible components have been studied,
namely the instanton components, 3/22



The idea of construction

and the Ein components, whose general point corresponds to a bundle
given as cohomology of a monad of the form

0— O[pﬁ(—C) — OPS(—b) S Oﬂnﬁ(—a) S O[pﬁ(a) ©® O[pﬁ(b) — O]pS(C) — 0,
b>a>0,c>a+b.

In 2019 A. Kytmanov, T, & S. Tikhomirov proved that the Ein
components are rational varieties.

All of the components of B(n) for n < 4 are of either of these types; here
we focus on a new family of bundles that appear as soon as n > 5.

More precisely, we study the set of vector bundles in B(a® + k) for each
a > 2 and k > 1 which arise as cohomologies of monads of the form:

0 — Ops(—a) ® Ops(—1)%% — 052K — Ops (1) @ Ops(a) — 0,

which will be denoted by G(a, k). We provide a bijection between such
monads and monads of the form:

0— Ops(—a) = E = Op(a) = 0,

where E is a symplectic rank 4 instanton bundle of charge k.
4/22



The idea of construction

When k = 1, these facts are used to prove our first main result. (See
Theorem 5.2 below.)

Main Theorem 1
For each a > 2 not equal to 3, G(a,1) is a nonsingular dense subset of a

rational irreducible component of B(a® + 1) of dimension 4(°}) — a — 1.

Our second main result provides a complete description of all the
irreducible components of B(5).
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(iii) the closure of the set G(2,1), of dimension 37 consisting of the so-
called modified instantons given as cohomology of monads of the form
0 — Ops(—2) ® Ops(—1) = OF° — Opa(1) ® Op3(2) — 0 (4)
or of the form
0 — Ops(—2) ® Ops(—1)82 — Ops(—1) ® O ® Ops(1) —

— Ops(1)®2 & Op3(2) — 0. (5)
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Irreducible components of 5(5)

The idea of construction

Component | Dimension | Monads Spectra a-invariant
Instanton 37 (1) (0,0,0,0,0) 0
(2) (-1,-1,0,1,1)
Ein 40 (3) (-2,-1,0,1,2) 1
Modified
Instanton 37 (4) (-1,0,0,0,1) 1
(5)

Here a-invariant of a vector bundle E is a(E) := h*(E(—2))mod 2.
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Proof of Theorem 1

Proof of Theorem 1

A vector bundle E is called instanton bundle if h'(E(—i — 1)) =0,
i =0,1,2,3. Here is a list of some properties of instanton bundles.
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(i) Every rank 4 instanton bundle E of charge 1 satisfies an exact triple
0— (’)ng — E — N — 0, where N is a null-correlation bundle.

(i) The cohomology bundle E = H°(M®) of the monad M*® of the form:
M®: 0= Ops(—1) = OF° — Ops(1) — 0, (6)
is a rank 4 instanton bundle E of charge 1.

(iii) Any rank 2 bundle [€] € G(a, k) is the cohomology of a monad

0— Ops(—a) > E — Ops(a) > 0 (M
where E is a rank 4 instanton bundle E of charge k.
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Proof of Theorem 1

We construct three families of symplectic monads of the form (6). The
first one is the universal family, with the base scheme S, of monads with
E splitting as

E=0Fa&N

where N is a null correlation bundle.
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open subset, of monads with E a general symplectic rank 4 instanton of
charge 1.

The third is a family of monads with E splitting as in the first one, but
with a new base Y. All the three families inherit universal cohomology

sheaves, and it is shown that the images of their corresponding modular
morphisms to B(a? + 1) have the same closure G(a, 1).

We will give now more details of construction for this family Y. For this,
introduce some new schemes and morphisms.
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Similarly, there are well-defined modular morphisms
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Proof of Theorem 1

Comments to the construction of S:
G(a,1) = {[€] € B(a®> + 1) | £ = H(AL)}, where A% is a monad:

AL 0= Op(—a) ® Op(—1) » O — Ops(1) ® Ops(a) — 0,

O]pii *1) Oﬂﬁ(a)

e

Op3(—a) ® Ops(—1)=—"> OZ° Ops (1) @ Ops(a)

l T~

O]P3(_a) Opz(l)

_ kerfBo.
~ imaqg ”
0 — Ops(—a) > E — Ops(a) > 0 (M
& = H°(monad (7))
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Proof of Theorem 1

Theorem

() ®5(5) =9(a,1).

(i) G(a,1)g :=Dy(Y) = ®s(S) is a dense subset of G(a, 1).
(iii) The modular morphism ®y factors as

Sy Y 5P B(a®+ 1),

where P is a rational variety and m : Y — P is a principal G-bundle,
where G ~ GL(2,k) x k*. Hence, P = G(a,1)o.

(iv) dimP =4(°1%) —a—1=h'(End(E,)) fory € Y. Hence, G(a,1) is
an irreducible component of B(a® + 1).

The proof of this theorem is an explicit calculation, though quite
involved, especially of statement (iii). Main Theorem 1 is a direct
corollary of this theorem.
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Proof of Theorem 2

Proof of Theorem 2

Consider the set
H=A{[€] € B(5) | £ =H(M*), where M* is a monad of type (5)},
M 0— M5 M E Mo, MY = Ops(2) & Ops (1)%2,
=Op(-1)® Ve 0% @ Op(1), M= (M.

It is known [Hartshorne-Rao, 1991, Table 5.3] that H # (). Note that H
is a constructible subset of B(5), as well as G(2,1). We prove

Theorem
dim(H ~ (6(2,1)N#H)) < 36.
Hence the closure of H in 8(5) does not constitute a component of B(5).

The idea is to relate the vector bundle [] € H \ (G(2,1)NH) to a
certain rank 2 reflexive sheaf

F=F(M*)
with Chern classes ¢;(F) =0, &(F) =2 and c3(F) = 2k, 0 < k <6. 13/22



Proof of Theorem 2

Namely, M*® yields a display diagram in which « and 3y are the induced
morphisms:

Opa(=1)22 Ops(2)

| > |

M? (1)

TN

Ops(—2) Ops(1)82.

Since there is a unique (up to a scalar multiple) quotient morphism
MO — Ops(—1), we have well-defined morphisms

& Op(=1)%2 8 MO - Ops(—1)

G Op(1)=M 2 04 (1)%2,

14/22



Proof of Theorem 2

The sheaf F(M?*) is constructed in the following way: It occurs that the
only possible case for & and § is

a=p=0.

This condition and some standard diagram chasing with the above
display imply that there exist a uniquely defined monomorphism
J: Ops(l) — E = kerfo and, respectively, a uniquely defined

im «

epimorphism ¢ : coker(j) = Ops(—1). Then F(M?*) is defined as
F(M*®) := ker(e).
Again, a diagram chasing with the above display induces a monad:
0 — Ops(—2) 3 E — Ops(2) — 0, with & =H(E),

and uniquely defined monomorphisms j' : Ops(1) — coker(c) and
H

J" 1 Ops(—1) = Ops, and we set

15/22



Proof of Theorem 2

L = L(M?*) := coker(j’), P2 = P2(M*) := Supp(coker(j"")).
Claim:

(i) The sheaf L = L(M?®) is a stable reflexive rank 2 sheaf on P3,

[£] € R(1,4,6).

(i) The sheaf F = F(M?*) is a reflexive rank 2 sheaf on P3, fitting in an

exact triple
0=+ F = L—=>ZIyp(-1)—0,

and in its dual
0— L:(—].) — F = IZ,]PZ(Z) — 07
where P> = P2(M*), Z and W are subschemes of P?, dim Z < 0,
dim W <0, and
UZ)+ W) =6.

Chern classes of F are c1(F) =0, c(F) =2, 0 < 3(F) =2¢(W) < 12,

ie.,
[Fle || R« Ri = R(0,2, 2k).
0<k<6
16/22



Proof of Theorem 2

The relation between the sheaf £ = H°(M*) and the reflexive sheaf F
constructed above is given by the following

Proposition

There is an inclusion

HN (KNG 1) C || Ha

0<k<6

where

Hi = {[€] € B(5) | € is obtained from F, where [F] € Ry,

by the two subsequent elementary transformations (1) below},

0— ,C(—l) - F — IZ,IP’2(2) — 0, (step 1)
0—=E&— L — Op(2)—0, (step 2)

where P? is some plane in P*, Z C P2, dimZ <0, /(Z) =6 — k, and L
is a stable reflexive sheaf from R(1,4,6).

17/22



Proof of Theorem 2

Properties of the reflexive sheaf F are reflected in the following
statements. (Here we denote by R} and R} the moduli spaces of stable
and unstable reflexive sheaves from Ry, respectively.)

Claim:
(i) Ry # 0 only for 0 < k < 3, and any sheaf F from R{ fits in an exact
triple

0— Op > F 5 Ieps — 0,

where C = Sing(F/Ops) is a l.c.i. curve of degree 2 in P3,

X(Oc) =4~ 3c(F) =4~ k.

(ii) If C is reduced, then either c3(F) = 4 and C is a disjoint union | L
of two projective lines in P3, or c3(F) = 6, then C is a plane conic in P3.
(iii) If C is nonreduced then C is the scheme structure of multiplicity two
on a projective line | in P? defined by an exact sequence

0—>IC,P3—>I/7]P>3—>O/(m)—>0, —1<m=2-k<2.

(iv) The moduli spaces R} are varieties of dimensions dim R§ = dim RY
= 14, dim Ry = dim RS = 13, and they are fine.

18/22



Proof of Theorem 2

Claim:

Suppose that [F| € Rj. Then the following statements hold.
(i) R5 # 0 only for 0 < k < 2.

(i) dim RS =13, k =0,1,2.

(iii) For 0 < k <2 and any [F] € R3,

dim Ext!(F, F) = 13, Ext*(F,F)=0.

(iv) For any P2 € P3, h(F(2)) = 10, hY(F=(2)) = 0.

Using these two claims, together with the above Proposition on a pair of
elementary transformations from F to £, we eventually obtain the desired
result that dim(H ~ (G(2,1) N H)) < 36.

To finish the proof of Theorem 2, we make the following remarks.
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Suppose that [F| € Rj. Then the following statements hold.
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(i) dim RS =13, k =0,1,2.

(iii) For 0 < k <2 and any [F] € R3,

dim Ext!(F, F) = 13, Ext*(F,F)=0.

(iv) For any P2 € P3, h(F(2)) = 10, hY(F=(2)) = 0.

Using these two claims, together with the above Proposition on a pair of
elementary transformations from F to £, we eventually obtain the desired
result that dim(H ~ (G(2,1) N H)) < 36.

To finish the proof of Theorem 2, we make the following remarks.
The first ingredient is the result of [Hartshorne-Rao, 1991, Table 5.3,

case 5.(1)-(4)] saying that every bundle in B(5) is cohomology of one of
the monads (1)-(5).
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Proof of Theorem 2

It is known that the Atiyah-Rees a-invariant of E is invariant on the
connected components of the moduli space of stable vector bundles on
P3. One can easily check that the cohomologies of monads of the form
(1) and (2) have a-invariant equal to 0, while the cohomologies of the
monads (3), (4) and (5) have a-invariant equal to 1.
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Proof of Theorem 2

It is known that the Atiyah-Rees a-invariant of E is invariant on the
connected components of the moduli space of stable vector bundles on
P3. One can easily check that the cohomologies of monads of the form
(1) and (2) have a-invariant equal to 0, while the cohomologies of the
monads (3), (4) and (5) have a-invariant equal to 1.

Rao, 1987: the family of cohomology bundles of monads of the form (2)
is irreducible, of dimension 36, and it lies in a unique component of B(5).
Since instanton bundles of charge 5, i. e. the cohomologies of monads
(1), yield an irreducible family of dimension 37, it follows that the set

7 :={[E] € B(5) | o(E) = 0} (*)

forms a single irreducible component of B(5), of dimension 37, whose
generic point corresponds to an instanton bundle. In addition, every
[E] € T satisfies h*(€nd(E)) = 37; this was originaly proved by Katsylo
and Ottaviani in 2004 for instanton bundles, and by Rao in 1987 for the
cohomologies of monads (2). Therefore, Z is nonsingular. This completes
the proof of the first statement (i) of the Main Theorem 1.
20/22



Proof of Theorem 2

Our next step is to analyse bundles with a-invariant equal to 1.
Hartshorne, 1980: the family IC of stable rank 2 bundles E with

c1(E) =0 and (E) = 5 with spectrum (—2,-1,0,1,2) is an
irreducible, nonsigular family of dimension 40, and from the definition of
spectrum one has

h(£(-2)) =3, [l e k. (%)

[Hartshorne-Rao, 1991, Table 5.3, case 5.(4)]: bundles from K are
precisely those given as cohomologies of monads (3). This is a particular
case of a class of monads studied by Ein in 1988. Ein shows that the
closure K of K in B(5) is an irreducible component of B(5) of dimension
40.
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Hartshorne, 1980: the family IC of stable rank 2 bundles E with

c1(E) =0 and (E) = 5 with spectrum (—2,-1,0,1,2) is an
irreducible, nonsigular family of dimension 40, and from the definition of
spectrum one has

h(£(-2)) =3, [l e k. (%)

[Hartshorne-Rao, 1991, Table 5.3, case 5.(4)]: bundles from K are
precisely those given as cohomologies of monads (3). This is a particular
case of a class of monads studied by Ein in 1988. Ein shows that the
closure K of K in B(5) is an irreducible component of B(5) of dimension
40.
Main Theorem 1, case a = 2: bundles arising as cohomology of monads
(4) (modified instantons) form a dense subset G(2,1) of a rational
irreducible component of dimension 37. Consider the above studied set
‘H of cohomology bundles of monads (5). Since the bundles from
G(2,1) UH have the spectrum (—1,0,0,0, 1) by [Hartshorne-Rao, 1991,
Table 5.3, case 5.(2)], we have

hH(E(-2)) =1, [El€G(2,1)UH, (% * %)
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Proof of Theorem 2

so that a(€) = 1, and therefore, in view of (*), HNZ = 0. As we have
seen in Theorem on the dimension of H, H does not constitute a
component in B(5), it then follows from the above that

HCG(2,1)UK.

Proposition

HCG(2,1) and K = K.

Proof. We only have to show that (G(2,1) UH) N K = (). Suppose by
contradiction that there exists a vector bundle [£] € (G(2,1)UH)NK.
By (**) and the inferior semi-continuity of the dimension of the
cohomology groups of coherent sheaves, one has that h'(£(—2)) > 3,
contrary to (¥**). O

This last proposition finally concludes the proof of Main Theorem 2.
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