• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Scientists at HSE University Devise More Accurate Method for Predicting the Electrical Conductivity of Electrolyte Solutions

Scientists at HSE University Devise More Accurate Method for Predicting the Electrical Conductivity of Electrolyte Solutions

© iStock

Researchers at HSE MIEM have developed a model for calculating the electrical conductivity of aqueous electrolyte solutions; for the first time, it considers the spatial distribution of ion charges instead of assuming their localisation at a single point. The model remains effective even at high electrolyte concentrations and across a wide temperature range. This breakthrough will contribute to the development of more efficient batteries and enable the calculation of electrical conductivity without the need for experimental testing. The study has been published in the Journal of Chemical Physics.

Electrolytes are substances that dissolve in water to produce charged particles known as ions. When exposed to an electric field, ions in a solution can move and generate an electric current. Thanks to this property, ions play a crucial role in nerve and muscle function, maintaining water balance, storing and releasing energy in batteries, and purifying water in desalination systems. 

The electrical conductivity of an electrolyte solution measures its ability to conduct an electric current. Classical theories for calculating electrical conductivity are effective at low concentrations, but as concentration increases, effects arise that these theories do not account for, resulting in discrepancies with experimental data. As a result, obtaining accurate information in systems with limited data on electrical conductivity or where measurements are challenging becomes difficult.

Scientists at HSE University have developed a new model that calculates the electrical conductivity of aqueous electrolyte solutions based on the Debye–Hückel–Onsager theory. Their model accounts for ion specificity, including steric interactions, hydration effects, and spatial charge distributions. Unlike the classical Debye–Hückel–Onsager theory, the modified theory assumes that ion charges are not concentrated at a single point but are instead distributed as clouds, which can be described using a specialised mathematical function.

'We chose not to perform complex calculations of the ion charge distribution function based on first-principles quantum chemistry. Instead, we decided to adjust it by modifying the charge smearing parameter,' explains Yury Budkov, co-author of the paper and Leading Research Fellow at the MIEM HSE Laboratory for Computational Physics.

According to him, incorporating the ion charge distribution function into the theory aligns with modern concepts of matter's structure, based on the quantum theory of multi-electron systems. The new model not only accurately reproduces the experimental relationship between electrical conductivity and concentration at a fixed temperature but also predicts the electrical conductivity of aqueous electrolytes across different temperatures and ion charges. For solutions of sodium, potassium, and lithium chloride salts, the obtained data aligns with experimental results up to concentrations of 4 mol/litre, which represents the best result to date.

In the future, scientists plan to refine the model for non-aqueous electrolyte solutions and adapt it for multicomponent electrolyte systems. This is important from a practical standpoint, as such systems are used in batteries, supercapacitors, and other energy storage devices, where precise calculations of electrical conductivity are essential to improving efficiency and durability.

See also:

Scientists Present New Solution to Imbalanced Learning Problem

Specialists at the HSE Faculty of Computer Science and Sber AI Lab have developed a geometric oversampling technique known as Simplicial SMOTE. Tests on various datasets have shown that it significantly improves classification performance. This technique is particularly valuable in scenarios where rare cases are crucial, such as fraud detection or the diagnosis of rare diseases. The study's results are available on ArXiv.org, an open-access archive, and will be presented at the International Conference on Knowledge Discovery and Data Mining (KDD) in summer 2025 in Toronto, Canada.

Hi-Tech Grief: HSE Researchers Explore the Pros and Cons of Digital Commemoration

Researchers at HSE University in Nizhny Novgorod have explored how technological advancements are transforming the ways in which people preserve the memory of the deceased and significant events. Digital technologies enable the creation of virtual memorials, the preservation of personal stories and belongings of the deceased, interaction with their digital footprint, and even the development of interactive avatars based on their online activity. However, these technologies not only evoke nostalgia and provide a sense of relief but can also heighten anxiety and fear, and delay the process of accepting loss. The study has been published in Chelovek (The Human Being). 

Scientists Find Out Why Aphasia Patients Lose the Ability to Talk about the Past and Future

An international team of researchers, including scientists from the HSE Centre for Language and Brain, has identified the causes of impairments in expressing grammatical tense in people with aphasia. They discovered that individuals with speech disorders struggle with both forming the concept of time and selecting the correct verb tense. However, which of these processes proves more challenging depends on the speaker's language. The findings have been published in the journal Aphasiology.

Implementation of Principles of Sustainable Development Attracts More Investments

Economists from HSE and RUDN University have analysed issues related to corporate digital transformation processes. The introduction of digital solutions into corporate operations reduces the number of patents in the field of green technologies by 4% and creates additional financial difficulties. However, if a company focuses on sustainable development and increases its rating in environmental, social, and governance performance (ESG), the negative effects decrease. Moreover, when the ESG rating is high, digitalisation can even increase the number of patents by 2%. The article was published in Sustainability.

Russian Scientists Develop New Compound for Treating Aggressive Tumours

A team of Russian researchers has synthesised a novel compound for boron neutron capture therapy (BNCT), a treatment for advanced cancer that uses the boron-10 isotope. The compound exhibits low toxicity, excellent water solubility, and eliminates the need for administering large volumes. Most importantly, the active substance reaches the tumour with minimal impact on healthy tissues. The study was published in the International Journal of Molecular Sciences shortly before World Cancer Day, observed annually on February 4.

Scientists Discover Link Between Brain's Structural Features and Autistic Traits in Children

Scientists have discovered significant structural differences in the brain's pathways, tracts, and thalamus between children with autism and their neurotypical peers, despite finding no functional differences. The most significant alterations were found in the pathways connecting the thalamus—the brain's sensory information processing centre—to the temporal lobe. Moreover, the severity of these alterations positively correlated with the intensity of the child's autistic traits. The study findings have been published in Behavioural Brain Research.

Earnings Inequality Declining in Russia

Earnings inequality in Russia has nearly halved over the past 25 years. The primary factors driving this trend are rising minimum wages, regional economic convergence, and shifts in the returns on education. Since 2019, a new phase of this process has been observed, with inequality continuing to decline but driven by entirely different mechanisms. These are the findings made by Anna Lukyanova, Assistant Professor at the HSE Faculty of Economic Sciences, in her new study. The results have been published in the Journal of the New Economic Association.

Russian Physicists Discover Method to Increase Number of Atoms in Quantum Sensors

Physicists from the Institute of Spectroscopy of the Russian Academy of Sciences and HSE University have successfully trapped rubidium-87 atoms for over four seconds. Their method can help improve the accuracy of quantum sensors, where both the number of trapped atoms and the trapping time are crucial. Such quantum systems are used to study dark matter, refine navigation systems, and aid in mineral exploration. The study findings have been published in the Journal of Experimental and Theoretical Physics Letters.

HSE Scientists Develop Application for Diagnosing Aphasia

Specialists at the HSE Centre for Language and Brain have developed an application for diagnosing language disorders (aphasia), which can result from head injuries, strokes, or other neurological conditions. AutoRAT is the first standardised digital tool in Russia for assessing the presence and severity of language disorders. The application is available on RuStore and can be used on mobile and tablet devices running the Android operating system.

HSE Researchers Discover Simple and Reliable Way to Understand How People Perceive Taste

A team of scientists from the HSE Centre for Cognition & Decision Making has studied how food flavours affect brain activity, facial muscles, and emotions. Using near-infrared spectroscopy (fNIRS), they demonstrated that pleasant food activates brain areas associated with positive emotions, while neutral food stimulates regions linked to negative emotions and avoidance. This approach offers a simpler way to predict the market success of products and study eating disorders. The study was published in the journal Food Quality and Preference.